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peroxide 8 was recovered unchanged after heating to 75 0 C in 
carbon tetrachloride for 45 min. It was, however, rapidly hy-
drolyzed to the hydroperoxide l l : 8 IR ( C H C l 3 ) 3560, 3350, 
1725 c m - ' ; 1 H N M R (CCl 4 ) 8 1.30 (s, 6), 2.33 (s, 3), 9.00 (s, 
1, br) . Li thium a luminum hydride reduced both 8 and 9 to 
2,3-dihydroxy-2-methylbutane and ozonolysis of 7 in methanol 
a t 5 0 C , followed by reductive decomposition of the two in­
termediates 8 and 9 with dimethyl sulfide,9 furnished the hy­
droxy ketone 12 in 37% yield. 

The experiments described above were extended to include 
three additional vinylsilanes and one acetylenic silane (Table 
I). The products obtained from the three vinylsilanes leave little 
doubt that they also are derived from intermediate dioxetanes 
and peroxides. These less substituted analogues of 8 and 9 were 
much more reactive and evidence for their existence rests on 
spectra of the crude products only. 

It seems unlikely tha t the dioxetanes and the trimethylsil-
ylperoxy ketones are formed from vinylsilanes and ozone in 
one-step processes, but the na ture of their precursor(s) re-
main(s) obscure. 
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Table I. Photooxygenation of 2-Methoxynorborn-2-ene° 

Solvent 5 

CDjOD* 58f 

CHjOD<- 40 
CH3OHrf 0 

6 

4 
15 
12 

Products, % 
Others 

38(12X = D; R = CD3) 
45(13, X = D; R = CH3) 
39(14, X = H; R = CH3) 

15 

0 
0 

49 

" Methylene blue was used as sensitizer at —20 0 C. * Equimolar 
absorption of oxygen. c Relative percentages were calculated by in­
tegration of the NMR signals of the methoxy group. They are in 
agreement with the actual percentages of the products isolated by 
column chromatography. d 60% of an equimolar absorption of oxy­
gen. 

Products 

at C-2 on 1 unequivocal evidence is obtained for the inter­
mediacy and discrete existence of the corresponding derivatives 
of 2 and 3, respectively.3 

The photooxygenation of 2-methoxynorborn-2-ene (4) in 
acetonitrile using methylene blue as sensitizer at —20 0 C gave 
just two products, the dioxetane (5) and methyl cis-\-
formylcyclopentane-3-carboxylate (6) in yields of 56 and 
34%. 4 - 6 The s t ructure of 5 and its exo stereochemistry was 
established by its ready cleavage to 6 (half-life of 105 min at 
36 0 C ) and its characteristic N M R spectrum. The C-3 proton 
is strongly deshielded (S 5.08 ppm in CCl 4 ) which is typical of 
tr isubsti tuted dioxetanes.7 Moreover, its endo disposition is 
nicely confirmed by the long range coupling with the anti C-7 
proton (473,7a = 1 .6Hz) . 8 

^ r 

5 -

OCH3 OCH3 

Characterization of a Dioxetane 
Deriving from Norbornene and Evidence for 
Its Zwitterionic Peroxide Precursor 

Sir: 

Considerable controversy surrounds the intermediacy of 
perepoxides or 0-oxides in the reaction of singlet oxygen with 
monoolefins.1 A typical instance concerns the reaction of sin­
glet oxygen with norbornene (1). The products of photooxy­
genation are compatible with the formation of the dioxetane 
(3) which could have conceivably arisen from its perepoxide 
precursor (2).2 However, attempts to characterize 2 or 3 proved 
fruitless. We now report that by placing a methoxy substituent 

The behavior of 5 toward triphenylphosphine was also 
typical.9 When the latter was added to a solution of 5 in carbon 
tetrachloride its NMR spectrum disappeared, presumably 
owing to the formation of the phosphorane 7 or the epoxide 8, 
although attempts to isolate them as such failed. Nevertheless, 
indirect proof of these products was obtained by adding 
methanol to the solution which gave the exo-hydToxy ketal 9 
in quantitative yield. A similar result was obtained on adding 
deuteriomethanol, but this time a mixture of the exo- and 
ew/o-deuteriomethoxy ketals 10 and 11 in a ratio of 66:34 was 
obtained.10 

When the photooxygenation was carried out with methylene 
blue in the protic solvents, methanol, and its deuterio deriva­
tives, the reaction course was still the same, but products in-
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corporating solvent appeared (Table I). 
The hydroperoxides 12 and 13 were easily identified by their 

reduction with triphenylphosphine to the ketal alcohols 10 and 
9, respectively." 

IZ-H 

The effect of solvent is dramatic. The reaction is much 
slower in methanol than in its deuterated derivatives in that 
only 60% of the equimolar quantity of oxygen is absorbed.12 

Moreover, the dioxetane is completely absent and is replaced 
by a new product 15. This result is readily explained by the 
following experiment. A slight excess of the norbornene 4 is 
added to a solution of the dioxetane 5 in neutral methanol at 
0 0C. The ether 15 is instantly formed as the only product. This 
is a new reaction of dioxetanes, which is remarkable for its high 
regioselectivity.13 A reasonable mechanism is that the double 
bond of 4 makes a nucleophilic attack on the C-3 ring oxygen 
atom of the dioxetane 5 to generate the methoxonium cation 
16.1415 Capture of a molecule of methanol gives the ether 15. 
When 4 and 5 were mixed in deuteriomethanol then both the 
exo- and ewfo-deuteriomethoxy isomers 17 and 18 were 
formed in exactly the same ratio as the deuteriomethoxy ketals 
10 and 11, viz., 66:34. 

C_0CH3 

Further tests revealed that the dioxetane 5 is inert toward 
methanol, deuterated or not, even under the conditions of 
photooxygenation. All that ultimately occurs is opening to the 
ester 6 on prolonged irradiation. Further, the hydroperoxides 
12 and 13, as well as 6, were recovered unchanged after pho­
tooxygenation in methanol for 1 h. The norbornene 4 was 
equally inert to triplet oxygen either on simple irradiation or 
in the dark.16 

Consequently, it is safe to assume that 14 arises from a 
zwitterionic perepoxide which can be formulated as 19 or 20. 
In methanol these tautomers would be intercepted to give the 
hydroperoxide 14. However, once they rearrange to dioxetane 
5, they remain closed and inert to further reaction with 
methanol. 

These findings parallel those obtained from the photooxy­
genation in methanol of 2-trimethylsiloxynorbornene17 and 
1,3-dimethylindole,18 where zwitterionic peroxides have been 
invoked. Moreover, they provide chemical evidence for the 
prediction19 that such intermediates are separated by a finite 

energy barrier from the dioxetane, thereby permitting the 
chemistry of each species to be discerned. 
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Absolute Rates of Hydrogen Abstraction 
by ferf-Butoxy Radicals 

Sir: 

The reactions of ?er/-butoxy radicals have been the subject 
of numerous studies;1-5 quite frequently these have been re­
lated to the halogenation of organic substrates by tert-b\ity\ 
hypochlorite. 1-3'5c Despite these studies, the absolute values 
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